Hierarchical starch-based fibrous scaffold for bone tissue engineering applications.

نویسندگان

  • Albino Martins
  • Sangwon Chung
  • Adriano J Pedro
  • Rui A Sousa
  • Alexandra P Marques
  • Rui L Reis
  • Nuno M Neves
چکیده

Fibrous structures mimicking the morphology of the natural extracellular matrix are considered promising scaffolds for tissue engineering. This work aims to develop a novel hierarchical starch-based scaffold. Such scaffolds were obtained by a combination of starch-polycaprolactone micro- and polycaprolactone nano-motifs, respectively produced by rapid prototyping (RP) and electrospinning techniques. Scanning electron microscopy (SEM) and micro-computed tomography analysis showed the successful fabrication of a multilayer scaffold composed of parallel aligned microfibres in a grid-like arrangement, intercalated by a mesh-like structure with randomly distributed nanofibres (NFM). Human osteoblast-like cells were dynamically seeded on the scaffolds, using spinner flasks, and cultured for 7 days under static conditions. SEM analysis showed predominant cell attachment and spreading on the nanofibre meshes, which enhanced cell retention at the bulk of the composed/hierarchical scaffolds. A significant increment in cell proliferation and osteoblastic activity, assessed by alkaline phosphatase quantification, was observed on the hierarchical fibrous scaffolds. These results support our hypothesis that the integration of nanoscale fibres into 3D rapid prototype scaffolds substantially improves their biological performance in bone tissue-engineering strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Potential of Hierarchical Starch-based Fibrous Scaffold for

Galway, Ireland Evaluation of the Potential of Hierarchical Starch-based Fibrous Scaffold for Bone Tissue Engineering Applications Analuce C. Gouveia, Albino Martins, Ana Rita Costa-Pinto, Nuno Silva, Rui L. Reis, Nuno M. Neves Corresponding Author: [email protected] 3B’s Research Group Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European I...

متن کامل

Mechanical performance of three-dimensional bio- nanocomposite scaffolds designed with digital light processing for biomedical applications

Introduction: The need for biocompatible and bioactive scaffolds to accelerate the regeneration and repair of fractured bones has been considered for bone tissue engineering applications during recent decades. The new methods were developed to produce scaffolds to improve the tissue quality, size of cavities, control the porosity and increase the scaffold compressive strength u...

متن کامل

Improving the mechanical and bioactivity of hydroxyapatite porous scaffold ceramic with diopside/forstrite ceramic coating

Objective(s): Scaffolds are considered as biological substitutes in bone defects which improve and accelerate the healing process of surrounding tissue. In recent years a major challenge in biomaterials is to produce porous materials with properties similar to bone tissue. In this study, the natural bioactive hydroxyapatite scaffolds with nano Diopside /Forstrite coating was successfully synthe...

متن کامل

Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold

Objective(s): To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO) nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers.  Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nano...

متن کامل

Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of tissue engineering and regenerative medicine

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 2009